





or How Mother Nature conspires to ruin your clinical trial before you ship your first dose

Dan O'Donnell Director, Cell Therapy Logistics Fisher BioServices



Part of Thermo Fisher Scientific

# **Thermal Capacity**

## Thermal Capacity

The measurable physical quantity of heat energy required to change the temperature of an object or body by a given amount.

 Given the constituents of a shipping solution; Dry Shipper, Data Logger, Shipping Rack, Payload, Outer Container, Means and Conditions under which it ships. How long can an acceptable temperature maintained.

# **The Challenge**

 In a world with an average temperature of 14 °C how do you maintain a temperature of -140 °C or less for an extended period of time?





# **Dry Shipper System Qualification**





Gravity

### Newton's Law of Gravity

The force that attracts a body toward the center of the earth, or toward any other physical body having mass. For most purposes Newton's laws of gravity apply

### Dry Shippers & Gravity

For our purposes it is the process that takes place when a carrier lays the dry shipper on it's side or upside down during transit forcing the remaining LN2 to the side and out of the shipper reducing hold time dramatically





# **Orientation Risk**

### Why Orientation Matters

- A shipper on its side for as little as 6 hours can lose 40% to 70% of its hold time
- An inverted shipper can lose 60% to 90% of its hold time
- The bigger the shipper the more rapid the loss of hold time

### Orientation Risk Escalating Scenarios

- This can be a serious concern if your product:
  - If the shipper experiences extended customs clearance times
  - Is in the dry shipper and is used for short term storage at the receiving site





Fisher BioServices

# **Orientation Risk Mitigation**

### Labeling

 Makes sense in theory does little in practice

# Tilt Indicators

Always return actuated

# Packaging Solutions

- · Secured to a pallet
- Upright configurations

# Orientation monitoring Devices

 Cannot intervene but do let you know with some confidence level of the hold time remaining





# Entropy

- Lack of order or predictability; gradual decline into disorder
- It Is The Gradual Deterioration of the Primary Constituents Of The Dry Shipper
  - Vacuum
  - Hydrophobic absorbent material which holds the LN<sub>2</sub>

### Deterioration Can Be Caused Age And Damage





# You Can't Stop Entropy but...

# You Can Test For It

- Testing should be done on a regular basis
- Highly recommended after each use
- Monthly or Quarterly if used infrequently

### Test when you suspect the unit has been damaged

- Reduction in hold time
- Visible damage

# Handle with Care

- Don't drop or bang then around
- Keep them cold
- Don't attempt to disinfect the interior chamber





# You Can't Stop Entropy but...

### Test Levels

- Set up regular interval for testing
- Can be very sophisticated looking at a number of different variables IQ/OQ/PQ
- Qualification Upon Receipt and then every 18 months
- Weigh before every use
  - Measure against an established baseline
- Recording your results will allow you to establish trends
- Establish retirement policy
  - Universal, by project



GEN

Fisher Bio Services

# Laws that Govern the Movement and Temperature of Gases

- Dalton's Law of Partial Pressures
  - The total pressure of a mixture of gases is equal to the sum of the partial pressures of the various components
- Charles' Law
  - The Volume of a gas is directly proportional to the Temperature (Kelvin) at constant P and n.
- Amonton's Law
  - The Pressure of a gas is directly proportional to the Temperature (Kelvin) at constant V and n.
- Boyle's Law
  - The Pressure (P) of a gas is inversely proportional to Volume (V) at constant

Temperature (T) and moles of gas (n).



# The Gas Laws – Impact



∧ Highest Area of Impact

### Lowest Area of Impact





# The Gas Laws Overcoming Adversity

# **Rules to Minimize Impact**

- Position payload at the lowest possible level
- Baffle to direct aspirated air away from the payload and probe
  - If the payload is low baffle to keep aspirated air high
  - If the payload is distributed through out the vessel force the aspirated air low

### Package to protect the payload

Additional insulation is a plus

### Map probe to payload

• While protecting the payload is paramount but remember the data logger is reading the probe.



# It is not Rocket Science but ---





Source: Khooll.com by Jorge Lopez

 Both involve living material traveling in a vessel with a controlled artificial environment surrounded by a hostile one

 In both cases if you get the mission right 99% of the journey you still fail catastrophically



# **Reproducible Success is Possible**

# Precise Planning Meticulous Preparation Flawless Execution

# eBooks and White Papers

### **Cell Therapy eBook**

# [InfoPoster] 10 Things You Should Know About Dry Shippers Before Shipping High Value Biologics



### Download at blog.fisherbioservices.com



# **Questions?**

# **Contact Us**

USA | UK | CH 1.301.315.8460 www.fisherbioservices.com Info.FisherBioServices@Thermofisher.com

in /Company/Fisher-BioServices



